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à

Introduction

Searching for documents and other items on the Web or computers is often tedious and
time consuming.  Time is money.  Highly paid professionals spend hours, days, and even
longer searching for information on the Web or computers.  Most search today is done
using key word and phrase matching, often combined with various ranking schemes for
the search results.   Occasionally more advanced methods such as logical queries, e.g.
search for "rocket scientist" and NOT "space", and regular expressions are used.  All of
these methods have significant limitations and often require lengthy human review and
further manual searching of the search results.  The dream search engne would search by
topic, by the detailed content of the items searched, ideally finding the desired informa­
tion immediately.  Actual understanding of text remains a unfulfilled promise of artificial
intelligence.  Statistical language processing can achieve a degree of searching by topic.
This article introduces the basic concepts and mathematics of statistical language process­
ing and its  applications to search.  It  gives a brief introduction and overview of more
advanced  techniques  in  statistical  language  processing  as  applied  to  search.   It  also
includes sample Ruby code illustrating some simple statistical language processing meth­
ods.

Professionals spend substantial amounts of time and money searching for documents and
information.   For example,  programmers use  the  Web to locate  solutions  for  obscure
bugs,  often reports  by other  programmers  who  have  already encountered  the  bug,  in
widely used programs such as Excel.  With search engines programmers can sometimes
find these solutions in a few minutes, but a search for a bug report often take hours or
even days to find a solution using a Web search.  Experienced programmers also spend
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hours, even days, relearning how to do things they already know how to do in a new
programming language, finding out how to use a rarely used feature in a familiar program­
ming language, and identifying undocumented functions.  This  is  often done using the
search features  of online help  systems  and  code editors,  often little more than simple
word and phrase matching (or occasionally regular expression matching).

Lawyers search for  legal cases,  laws, regulations,  Law Review articles, and  so forth.
Medical doctors search for papers and other information on medical conditions and treat­
ments.  Research scientists search for research papers, doctoral dissertations, patents, and
tables of previously measured data.   Engineers search for books and papers,  technical
data,  technical  drawings  of  working  machines,  mathematical  formulas  for  computing
useful results, and so forth.  Business analysts search for financial and marketing data.
With professional salaries of tens to even hundreds of dollars per hour, lengthy searches
cost hundreds to thousands of dollars per search.  Some busy professionals may conduct
hundreds of important searches per year.  More powerful search engines can save time
and money and bring success.  

Hourly Rate        Duration of Search                Cost of Search        Cost of 100 
                                                                           Searches
$20                30 minutes                          $10                   $1,000
$20                 2 hours                            $40                   $4,000
$20                20 hours                           $400                  $40,000
$50                30 minutes                          $25                   $2,500
$50                 2 hours                           $100                  $10,000
$50                20 hours                          $1000                 $100,000
$200               30 minutes                         $100                  $10,000
$200                2 hours                           $400                  $40,000
$200               20 hours                          $4000                 $400,000
$500               30 minutes                         $250                  $25,000
$500                2 hours                           $500                  $50,000
$500               20 hours                         $10000               $1,000,000
$1000              30 minutes                         $500                  $50,000
$1000               2 hours                          $2000                 $200,000
$1000              20 hours                         $20000               $2,000,000

Search engines remain based primarily on matching words and phrases often weighted by
the popularity of documents, advertising dollars, and other adjustments.  In practice, end
users may be unable to find a relevant document or spend many minutes, hours, or even
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days paging through search results and/or trying many different search words and phrases
in hopes of turning up a relevant document or item.  Popularity is not always a good mea­
sure of either the relevance or the quality of a document or item.   Rankings based on
advertising dollars may not match the needs of the end user of a search engine.  More
powerful methods are needed.

The cause of this costly and frustrating state of search is that present-day search engines
cannot understand either the search queries  or the documents  or items  searched.  For
example, if an end  user enters  the  search phrase "rocket  scientist",  they are  probably
looking for information on actual rocket scientists,  but not always.  Rocket scientist is
sometimes used as  generic term for highly skilled technical professionals  in scientific,
engineering, and similar fields.  A search for "rocket scientist" will occasionally turn up
articles on Wall Street financial engineers, also known as "quants", who are sometimes
referred to as "rocket scientists" in the financial literature.  More powerful search engines
will need understanding or a way to emulate some or all aspects of human understanding.

The dream search engine should find documents or other items by topic, not by word or
phrase, and return only documents or items related to the topic of interest.  Stephen Wol­
fram's Alpha is being marketed as such a search engine.  Time will tell if Alpha is or will
become the dream search engine.  To date, actual understanding of natural language by
computers  has  proven extremely  difficult,  like  most problems  in  artificial intelligence
(AI), and successes have been few and limited.  Hence, search engines continue to rely
on simple word and phrase matching.   While actual understanding is probably decades if
not centuries in the future,  statistical language processing methods can achieve a degree
of searching by topic today.  Statistical language processing involves measuring and using
the  frequency of words  and phrases  as  well  as  the  absolute and  relative  positions  of
words and phrases in text.  

Closely related problems also occur in recommendation engines and data loss prevention
(sometimes identified by the cryptic acronym DLP).  Recommendation engines such as
NetFlix's Cinematch system, which recommends DVD rentals to customers, recommend
possible purchases based on buying patterns and other data.  However, recommendation
engines do not understand customer preferences, products, product descriptions, and so
forth.  Recommendation engines use statistical methods to guess what other products or
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services customers are likely to purchase, giving the illusion of true understanding.

Data loss prevention consists of systems designed to prevent the accidental or intentional
loss or theft of sensitive information from companies and organizations, for example an e-
mail with customer credit card numbers sent to a credit card fraud group overseas.  In
some cases, for example social security numbers or credit  card numbers, the sensitive
information can be identified by matching simple patterns, such as regular expressions.
However, some sensitive information, such as a sensitive marketing plan, may lack easily
identifiable text or numerical patterns.  A human being reading the document can identify
it as sensitive easily but a data loss prevention algorithm would fail.  Again, even without
understanding, statistical patterns in the text of the document may be able to identify a
sensitive document.

Reproducing human intelligence on computers, artificial intelligence, has proven baffling.
Actual understanding of spoken or written text remains far beyond the state of computer
science.  However,  statistical language processing can imitate some aspects  of human
intelligence and yield more "intelligent" results  in speech recognition,  machine transla­
tion, and search.  The rest of this article gives an introduction and overview of the basic
concepts and mathematics of statistical language processing and its applications to improv­
ing the speed and lowering the cost of search.

à

A Brief Introduction to Mathematica

This article  presents mathematical formulas in the Mathematica  programming language
used to compute results and display graphics as well as in standard mathematical nota­
tion.  Mathematica is an algorithm prototyping and mathematical research tool similar to
MatLab.  Mathematica  and  MatLab are  scripting language  like Python or  Ruby with
comprehensive  well-integrated mathematical,  numerical,  and  statistical functions.   The
Mathematica  code is retained for greater clarity and detail.   The Mathematica  code in
this  article  is  usually simple, clear and contains comments  in plain English explaining
what the code does, but may be ignored by those unfamiliar with Mathematica.  In addi­
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tion, this article includes sample code in the popular Ruby scripting language.  Ruby is
free, open-source software available for Windows, Macintosh, and Unix platforms.  It
can be downloaded from the Ruby web site http://www.ruby-lang.org/.

Technically, everything in Mathematica code is an expression.  The key to both under­
standing Mathematica and the power of Mathematica is a type of expression known as a
list.   As might be expected, a list is simply a list of elements.  A table or matrix in Mathe­
matica is simply a list of lists.  Mathematica can represent almost anything as a list.

data = {0,Pi/8,2 Pi/8,3 Pi/8.0,4 Pi/8.0};  (* a simple 
list in Mathematica, Pi is 3.1415... *)

The  mathematical  functions  that  are  built  into  Mathematica  are  mostly  set  up  to  be
"listable" so that they act separately on each element of a list.

Sin[data]  (* the built in trigonometric sine function 
in Mathematica is "listable" *)90, SinA π����8 E, 1���������è!!!!2 , 0.92388, 1.=

However, some functions are not "listable".  Some functions act on a list as a whole.  

µ = Mean[data]  (* the average or arithmetic mean 
function is NOT "listable" *)

0.785398

This  article  uses  several functions  that  act  on a  list as  whole  including Length[list],
Mean[list],  Variance[list],  Covariance[list,  list],  Correlation[list,  list],  and  List­
Plot[list].

Most  mathematical,  numerical,  statistical,  and  graphics functions  in Mathematica  take
lists as arguments and often return lists.  The common but flexible list data type enables
tight  integratiion of  the  many mathematical functions  in Mathematica.   Like a  set  of
LEGO blocks or a TinkerToy, one can quickly create complex mathematical systems as
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needed.

Mathematica  derives from the tradition of list processing languages such as LISP and
Scheme  as  well as  functional programming that began in the 1960's  and has  recently
enjoyed a renaissance.  Mathematica has many more advanced list and functional program­
ming features, but for this article and indeed many common tasks the brief introduction
above is all one needs to know.

Mathematica  has a forbidding reputation in some circles because it  includes extensive
symbolic manipulation capabilities.  Mathematica is considered a type of computer alge­
bra system.  Some people believe that one must know and use these symbolic capabilities
to use Mathematica or that Mathematica is only for symbolic manipulation.  These sym­
bolic capablities are actually only one subset of Mathematica's capabilities.  Mathematica
has the same extensive numerical, statistical, mathematical, and graphics features as Mat­
lab or other competing products (Maple, AXIOM, Maxima, R, and many others).  

Mathematica does not require that one use its symbolic capabilities.  One can use Mathe­
matica  heavily without  ever using the  symbolic manipulation capabilities.  The author
worked on prototypes of image and video processing algorithms at NASA for years with­
out needing to use the symbolic features.  The symbolic features are not used in this arti­
cle.  Even quite complex mathematical models  of the frequency and location of words
and phrases in documents that might be developed for search applications would gener­
ally not require using the symbolic manipulation features of Mathematica.  Mathematica
and  Ruby  are  used  for  illustration;  the  needed  statistical  langugage  models  can  be
researched and developed in many other programming languages.
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à Correlations

A correlation coefficient is a simple concept from basic statistics.  It provides a simple
numerical measure ranging from -1.0 to 1.0 for the correlation betweeen two variables.
The main definition of correlation in English is a mutual relationship or connection.  It
can have a more precise meaning: the degree of relative correspondence, as between two
sets of data (a correlation of 75 percent).   In statistics, a correlation coefficient can be
any one of several measures of concommitant variation in two or more variables.  In this
article and the accompanying sample code, the simplest and most common correlation
coefficient from introductory statistics is used.     

The  correlation coefficient  is  built  from three simpler concepts  in basic  statistics: the
average, the variance, and the covariance.  The average of a series of data points is the
sum of the values of the data points divided by the number of data points.  The average of
(0,0,0) is 0.  The average of (1,2,3) is 2. 

The Average (also known as the arithmetic mean) is shown in the following Mathematica
code snippet:

<<Statistics`DescriptiveStatistics`  (* load the 
descriptive statistics package which includes the Mean 
function *)

<<Statistics`MultiDescriptiveStatistics`  (* load 
another Mathematica statistics package *)

<< Graphics`Graphics`                     (* load the 
main Mathematica graphics package *)

SeedRandom[17553]; (* set the seed for the Mathematica 
random number generator Random[] to ensure that same 
numbers are generated each time the Mathematica code 
is executed *)

search36.nb 7



data = Table[Random[], {i,10}];  (* data contains ten 
(10) randomly generated data points *)

M = Length[data]  (* Length[list] returns the number 
of elements in a list *)

10

HoldForm[Average = Sum[data[[i]], {i, M}] / (M) ] (* 
display formula for the average or arithmetic mean *)

Average = ⁄i=1
M dataPiT������������������������������M

Average = Sum[data[[i]], {i, Length[data]}] / 
Length[data] // HoldForm (* display formula for the 
average or arithmetic mean *)⁄i=1

Length@dataD dataPiT������������������������������������������������Length@dataD
µ = Mean[data]  (* compute average of data using built 
in Mean function *)

0.54752

Once we have the average of a series of data points, we can compute the variance, a
measure of the spread or dispersion of the data points.

The Variance (often represented by σ2 )  is  shown in the following Mathematica  code
snippet:

HoldForm[ σ^2 = Sum[ (data[[i]] - µ )^2, {i, 
Length[data]}] / (Length[data]-1) ]  (* display 
formula for the sample variance, where µ is the sample 
average *)

σ2 = ⁄i=1
Length@dataD HdataPiT − µL2���������������������������������������������������������������Length@dataD − 1
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The standard deviation, usually represented as s (the Greek letter sigma), is the square
root of the variance:

σ = Sqrt[σ^2] (* display formula for the standard 
deviation σ *)

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⁄i=1
Length@dataD HdataPiT − µL2���������������������������������������������������������������Length@dataD − 1

The covariance of two variables A and B, usually represented as sA,B  (the Greek letter
sigma with subscripts A and B) is defiined as:

HoldForm[\!\(TraditionalForm\`σ\_\(A, B\)\) = 
(1/(Length[a]-1)) Sum[ (a[[i]] - Mean[a]) (b[[i]] - 
Mean[b]), {i, Length[a]}] ]  (* display formula for 
sample covariance *)

σA,B =
⁄i=1
Length@aD HaPiT − Mean@aDL HbPiT − Mean@bDL��������������������������������������������������������������������������������������������������������Length@aD − 1

Cov[a_,b_] := Sum[ (a[[i]] - Mean[a]) (b[[i]] - 
Mean[b]), {i, Length[a]}] / (Length[a] - 1)  (* user 
defined function for the sample covariance *)

data = Table[Random[], {i, 1000}];  (* make a list of 
1000 data points.  Random[] returns a random number 
between 0.0 and 1.0 *)

Length[data]  (* Length[list] returns the number of 
elements in list *)

1000

Mean[data]  (* Mean[list] computes the average, 
arithmetic mean, of list *)

0.505141
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Cov[data,data]  (* my Covariance function, data is 
correlated with itself *)

0.0815323

Covariance[data,data]  (* built-in Covariance function 
in Mathematica *)

0.0815323

AntiData = Table[ Random[], {i, Length[data]}];  (* 
make an uncorrelated list of data points *)

Cov[data, AntiData]  (* my Covariance function *)

−0.00128841

Covariance[data, AntiData]  (* built-in Covariance 
function in Mathematica *)

−0.00128841

The correlation coefficient, often represented by rA,B  (Greek letter rho with subscripts A
and B), is the covariance of the variables A and B  sA,B  (Greek letter sigma with sub­
scripts A and B) divided by the product of the standard deviation of A and the standard
deviation of B.

rA,B  = sA,B  / sAsB    

σa,b = ⁄i=1
Length@aDHaPiT−Mean@aDL HbPiT−Mean@bDL����������������������������������������������������������������������Length@aD

HoldForm[ ρ = Sum[ (a[[i]] - Mean[a]) (b[[i]] - 
Mean[b]), {i, Length[a]}] / (Length[a] 
Sqrt[Variance[a] Variance[b] ])]  (* display formula 
for the standard correlation coefficient ρ *)

ρ = ⁄i=1
Length@aD HaPiT − Mean@aDL HbPiT − Mean@bDL��������������������������������������������������������������������������������������������������������
Length@aD è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Variance@aD Variance@bD
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Corr[a_,b_] := Sum[ (a[[i]] - Mean[a]) (b[[i]] - 
Mean[b]), {i, Length[a]}] / ((Length[a]-1) 
Sqrt[Variance[a] Variance[b] ])  (* end user defined 
correlation coefficient function *)

Corr[data, data]  (* my Correlation function, defined 
above *)

1.

Correlation[data,data]  (* built in Mathematica 
Correlation function *)

1.

Corr[data, AntiData] (* correlation calculated using 
the user defined function Corr *)

−0.0156761

Correlation[data, AntiData]  (* correlation calculated 
using the built in Mathematica function *)

−0.0156761

ü The Limits of Correlation Coefficients

The standard correlation coefficient only works well for linear relationships.  In the exam­
ple below the random variables X  and Y are closely related by the equation Y = Sin(X), a
non-linear relationship.  However, the expectation value of the standard correlation coeffi­
cient in the example below is 0.0.  The variables appear unrelated if the standard correla­
tion coefficient is used.  The expectation value of a discrete random variable X is ⁄ x
P(x) where x is the value of X and P(x) is the probability of that value.  For example,
consider flipping a fair coin.  If one gives the value 1.0 to heads and -1.0 to tails, the
expectation value of the coin flip is 0.0 = 0.5*1.0 + 0.5*(-1.0).    
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X = Table[ Pi Random[], {i, 1000}];  (* make list of 
data ranging from 0.0 to π (3.1415...) *)
Y = Sin[X];  (* make list of data Y where each element 
is the sine function of the corresponding element in 
the list X *)

Correlation[X, X] (* the correlation of a data sample 
with itself is 1.0 *)

1.

Correlation[X, 2 X] (* the correlation of a data 
sample with 2.0 times itself is 1.0 *)

1.

Correlation[X, -X]  (* the correlation of a data 
sample with -1.0 times itself is 1.0 *)

−1.

Correlation[X, -2 X] (* the correlation of a data 
sample with -2.0 times itself is 1.0 *)

−1.

The variables X and Y are essentially uncorrelated as measured by the standard correla­
tion coefficient.  The standard correlation coefficient is almost zero.  In fact, the expecta­
tion value of the correlation coefficient is exactly zero in this example.

Correlation[X,Y] (* the correlation between a data 
sample X and Y = Sin[X] is zero *)

−0.00465432

However, the variables X and Y are actually closely related because Y = Sin(X), a non-
linear relationship that is not detected by the correlation coefficient:
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ListPlot[Transpose[ {X,Y} ], PlotLabel-
>StyleForm["Plot of X vs Y (closely related)", 
FontSize->16], ImageSize->{72 7, 72 7}];

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Plot of X vs Y Hclosely relatedL

More sophisticated statistical methods and statistical models can detect and measure a
non-linear relationships such as Y=Sin(X).  These methods often involve either explicitly
or implicitly fitting a mathematical model of the relationships to the data.  A simple mathe­
matical model of the frequency of words and phrases in articles is shown below.

Correlation does not mean causation.  If two variables X and Y are correlated, X may
cause Y, Y may cause X, or X and Y may share a common cause.  Even perfectly corre­
lated variables can have a tenuous or indirect relationship.  Consider for example articles
on the web covering a niche issue such as scramjet engines.  All articles in this case might

search36.nb 13



be written by one aerospace journalist,  say "Karman Von Theodore",   All articles on
scramjets would be perfectly correlated with "Karman Von Theodore" but the correlation
would be quite tenuous.  If "Karman Von Theodore" retired or ceased writing articles on
scramjet  engines,  the correlation would  suddently disappear.   It  requires  more  than a
correlation to determine the nature of the relationship between two or more variables.

à N-Grams

An N-Gram is  a  simple  concept  used in speech recognition,  machine translation,  and
language processing.   A 1-gram or unigram is  simply a  single word such as  "the" or
"rocket".  A 2-gram or bigram is simply a pair of adjacent words such as "ice cream" or
"I scream".  A 3-gram or trigram is simply three adjacent words such as "ice cream cone"
or "I scream loudly".  An N-gram is simply N adjacent words where N is any integer
(1,2,3,...).

Standard  Hidden  Markov  Model  (HMM) based  speech  recognition  algorithms  make
heavy use of N-Grams, often trigrams, to recognize speech.  Even if speech recognition
algorithms  could  recognize the  sounds in speech,  the  so-called phonemes such as  the
"AH" sound in "father", as well as human beings, speech contains homonyms and near-
homonyms  such as "I scream" and "ice cream" that cannot be distinguished by sound
alone.  Human beings resolve homonyms and near-homonyms by actually understanding
the speech and determining the correct words from context.  Computer programs are a
long way from actual understanding of language.  However,  speech recognition algo­
rithms can use statistical models of the frequency of N-grams to determine what was said.
For example, consider the trigrams "I scream loudly" and "ice cream cone".  People are
less likely to say "I scream cone" or "ice cream loudly" than "I scream loudly" or "ice
cream cone".   The words "loudly" and "cone" are  not homonyms  or near homonyms.
They are acoustically distinctive.  Thus, a speech recognition algorithm can use the fre­
quency of  trigrams  such as  "I  scream loudly" and  "ice  cream cone" to  successsfully
resolve "I scream" and "ice cream".

Current HMM speech recognition algorithms use statistical language models of the fre­
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quency of N-Grams  to significantly improve the accuracy of speech recognition.   The
actual accuracy of current speech recognition algorithms in correctly identifying the basic
sounds in speech, the phonemes such as the "AH" sound in "father", is quite poor com­
pared to human beings, probably less than 80% accurate compared to 95-100% accuracy
for humans depending on conditions.  The automatic speech recognition systems used in
telephone help lines, where context information is limited, are usually designed to use a
small  vocabulary of words  and  phrases  that  are  very acoustically  distinctive  such as
"YES"  and  "NO"  to  get  around  the  limitations  of  current  speech  sound  recognition
(known as the acoustic model in the jargon of speech recognition).  Even so, errors still
occur.  Even the spectra of "YES" and "NO" are more similar than one would think based
on human hearing and it is more difficult than most people would think to develop an
algorithm to discriminate even between these two sounds.

N-Grams can be correlated with the topic of a document or the subject of a conversation.
For example, "ice cream" is more likely to be encountered in a story about a birthday
party than a story about a funeral.  "I scream" is more likely to be encountered in a horror
story than a romantic comedy.

à Combining Correlations and N-Grams

Correlation coefficients and N-Grams can be combined to illustrate finding documents by
topic using statistical language processing methods.  One needs a training set of docu­
ments labeled by topic.  Assign a topic variable a value of 1 if the document is about the
topic, a value of 0 if the document is not about the topic.  Assign an N-Gram variable a
value of 1 if the N-Gram, e.g "rocket scientist", is in a document, 0 if the N-Gram is not
present.  Then, one can compute correlation coefficients for the topic and the N-Gram.
As a first pass, one is looking for N-Grams that are highly correlated with the topic.  A
correlation coefficient of 1.0 would indicate an N-Gram that is perfectly correlated with
the topic in the training set of documents.  When an end user specfies a topic to search
for, the search engine will use the N-Grams identified from the training set to locate docu­
ments that are likely to be related to the topic of interest.
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à Example Ruby Code

The Ruby code that follows takes a training set and outputs a sorted list of correlation
coefficients between unigrams, bigrams, and trigrams in the training set and the topics.
The program takes an input file, train.txt, that lists the training set files and the topics.  It
is a simple example of the concept.  An actual search engine would be more complex
(obviously) and use more sophisticated statistical methods than correlation coefficients.
A brief overview of more advanced statistical methods follows the sample code.

train.txt (a sample training file with documents labeled
by topic -- test or rocket)

test.txt test
test2.txt test
test3.txt rocket
test4.txt rocket
test5.txt rocket

test.txt  (sample document from training set)

This is a test.
This is only a test.
This is still a test.
This was a test.
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If this had been real, you would be dead.

test2.txt  (sample document from training set)

my test
this is my test
it is not your test
your test is dismal
my test is better

test3.txt  (sample document from training set)

rockets are very difficult to design and build
The failure rate of rockets is very high
About 2% of manned rockets fail.
About 5% of unmanned rockets fail.
rocket engines are the most powerful engines on Earth.

test4.txt  (sample document from training set)

my rocket is bigger than your rocket
my rocket is faster than your rocket
my rocket is cheaper than your rocket
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my rocket looks snazzier than your rocket

test5.txt  (sample document from training set)

rockets are actually quite old
rockets date back over one thousand years
black powder or gunpowder was known long before it became 
an effective weapon
rockets and fireworks were made using black powder long 
before cannons
rockets made from black powder are very unreliable and 
difficult to aim
During World War II Jack Parsons found an alternative to 
black powder that was much better.

trigram.rb

=begin

Name: Trigram
Author: John F. McGowan, Ph.D.
Contact: jmcgowan11@earthlink.net
Web: http://www.jmcgowan.com
Copyright (C) 2009, John F. McGowan

Description: Trigram counts the ngrams in a training set 
of text files and computes
the correlation coefficient between the trigram and a 
topic (e.g. "rockets") over the training set.
An n-gram is a sequence of n words in a file.  A unigram 
is just a single word (e.g. "rocket").  A
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bigram is two words in sequence (e.g. "rocket exploded").  
A trigram is three words in sequence
(e.g. "rocket exploded violently").  A topic such as 
"rocket" refers to the meaning, the semantics, of 
a web page or document.  An ngram such as "rocket" or 
"rocket scientist" can appear in a web page or
document that has nothing to do with the topic.  For 
exmaple, "the rocket scientists on Wall Street
wrecked the global economy using the Gaussian copula 
model." in an article on mortgage backed
securities.  

The correlation coefficient ranges from -1.0 to 1.0.  1.0 
means a perfect correlation in the training
set.  The ngram is always present in documents about the 
topic and never present in documents not
about the topic.  0.0 means no correlation.  The presence 
or absence of the ngram tells nothing about
the topic.  For example, common words such as "the" or 
"is" are found in almost all documents.
-1.0 means the ngram is perfectly negatively correlated 
with the topic.  If the ngram is present, the
document is not about the topic.

Statistical models of the frequency of n-grams are used in 
speech recognition and machine translation.  
They can also be used in web or other document search 
applications to locate target web pages or 
documents by topic (e.g. rocketry).  One needs to find 
statistical patterns of words that are highly
correlated with the search topic.  Web pages or other 
documents can be hand labeled or one can use
keyword tags, meta tags, and so forth to identify the 
topic(s) of the document for training purposes.

At present the trigram script is a simple demonstration of 
the concept.  A real search engine would 
use more sophisticated statistical models.

Files: trigram.rb  # main script
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train.txt   # demo list of training files
triout.txt  # sample output file using the sample 

training files

Training File Topic  (in train.txt)
test.txt test
test2.txt test
test3.txt rocket
test4.txt rocket
test5.txt rocket

Platform:  Developed and tested (briefly) on Windows XP 
Service Pack 2 (2.6 GHz) Sony Vaio 
with Ruby 1.86 installed.

About the Author

John F. McGowan, Ph.D. is a software developer, research 
scientist, and consultant. He works 
primarily in the area of complex algorithms that embody 
advanced mathematical and 
logical concepts, including speech recognition and video 
compression technologies. He has many 
years of experience developing software in Visual Basic, 
C++, and many other programming languages 
and environments. He has a Ph.D. in Physics from the 
University of Illinois at Urbana-Champaign 
and a B.S. in Physics from the California Institute of 
Technology (Caltech). 
He can be reached at jmcgowan11@earthlink.net.

=end

class Trigram
def initialize(file_name)

@file = file_name
@tokens = []
@unigrams = {}
@bigrams = {}
@trigrams = {}
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@allgrams = {}

puts "reading #{file_name}"
@lines = IO.readlines(file_name)
puts "read #{@lines.length} lines "
for i in 0..@lines.length-1

@tokens = @tokens + @lines[i].split
# puts "\nLine #{i}"
#puts @tokens

end

for i in 0..@tokens.length-1
puts "checking #{@tokens[i]}"

if @tokens[i][-1].chr == "." || 
@tokens[i][-1].chr == "," || @tokens[i][-1].chr == "!" || 
@tokens[i][-1].chr == "?"

puts "removing trailing ."
@tokens[i] = @tokens[i].chop

end
@tokens[i] = @tokens[i].upcase  # don't worry 

about case for now
end

@tokens.each { |tok| 

# puts "checking #{tok} "
if @unigrams[tok] 

@unigrams[tok] = @unigrams[tok] + 1
                                else

@unigrams[tok] = 1
end

}  # collect histogram of 1-grams

for i in 0..@tokens.length-2
if @bigrams[@tokens[i] + "." + @tokens[i+1] ]

@bigrams[@tokens[i] + "." + @tokens[i+1]] 
= @bigrams[@tokens[i] + "." + @tokens[i+1]] + 1

else
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@bigrams[@tokens[i] + "." + @tokens[i+1]] 
= 1

end
end  # collect histogram of bigrams

for i in 0..@tokens.length-3
trig = @tokens[i] + "." + @tokens[i+1] + "." + 

@tokens[i+2]
if @trigrams[trig]

@trigrams[trig] = @trigrams[trig] + 1
else

@trigrams[trig] = 1
end

end  # collect histogram of trigrams

@allgrams = @unigrams.merge(@bigrams)
@allgrams = @allgrams.merge(@trigrams)

end  # initialize

def show
puts "1-grams #{@file}"
puts @unigrams
puts "\n2-grams #{@file}"
puts @bigrams
puts "\n3-grams #{@file}"
puts @trigrams

puts "\nAll N Grams #{@file}"
puts @allgrams

end

def unigrams
return @unigrams.keys

end

def bigrams
return @bigrams.keys

end
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def trigrams
return @trigrams.keys

end

def allgrams
return @allgrams.keys

end

def has_ngram?(ngram)
return @allgrams.has_key?(ngram)

end

end

class Trainer
def initialize(file_name)

@file = file_name  # file contains a list of file 
<space> topic

@training_file = []
@topic = []
@topic_file = {}
@topic_average = {}
@StatData = {}
@number_files = {}
@allmatches = {}
@allfilem = {}
@allngrams = []  
@correlation = {}  # indexed by n-gram and topic

@lines = IO.readlines(file_name)

@lines.each { |line|
@dummy = line.split
@training_file.push @dummy[0]  # text file
@topic.push @dummy[1]          # topic
@topic_file[@dummy[0]] = @dummy[1]  # quick 

lookup of file topic
@StatData[@dummy[0]] = Trigram.new(@dummy[0])
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@StatData[@dummy[0]].show
@local_tokens = []

if @number_files[@dummy[1]]  # number of files 
on topic

@number_files[@dummy[1]] = 
@number_files[@dummy[1]] + 1

else
@number_files[@dummy[1]] = 1.0

end 

# count how many files contain a unigram
@matches = @StatData[@dummy[0]].unigrams  # 

list of unigrams for file

@matches.each { |match|
key = match + "." + @dummy[1]  # combine 

keyword and topic
if @allmatches[key] 

@allmatches[key] = @allmatches[key] + 
1.0

else
@allmatches[key] = 1.0

end

if @allfilem[match]
@allfilem[match] = @allfilem[match] + 

1.0
else

@allfilem[match] = 1.0
end

} # end of block

# count how many files contain a bigram
@matches = @StatData[@dummy[0]].bigrams  # 

list of bigrams for file

@matches.each { |match|   # match is the bigram
key = match + "." + @dummy[1]  # combine 
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keyword and topic
if @allmatches[key] 

@allmatches[key] = @allmatches[key] + 
1.0

else
@allmatches[key] = 1.0

end

if @allfilem[match]
@allfilem[match] = @allfilem[match] + 

1.0
else

@allfilem[match] = 1.0
end

}  # end of block

# count how many files contain a trigram
@matches = @StatData[@dummy[0]].trigrams  # 

list of trigrams for file

@matches.each { |match|   # match is the 
trigram

key = match + "." + @dummy[1]  # combine 
keyword and topic

if @allmatches[key] 
@allmatches[key] = @allmatches[key] + 

1.0
else

@allmatches[key] = 1.0
end

if @allfilem[match]
@allfilem[match] = @allfilem[match] + 

1.0
else

@allfilem[match] = 1.0
end

}  # end of block
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@allngrams = @allngrams + 
@StatData[@dummy[0]].allgrams  # build list of all ngrams 
in all files

} # loop over files in training set
@number_files["ALL"] = @lines.length.to_f

# @allmatches = @allmatches / @number_files

@allmatches.each_key { |key|
@local_tokens = key.split(".")
@allmatches[key] = @allmatches[key] / 

@number_files[@local_tokens[-1]]
}

@allfilem.each_key { |key|
@allfilem[key] = @allfilem[key] / 

@number_files["ALL"]
}       # proportion of training files with 

ngram.topic compound key

@topic.each { |top|
@topic_average[top] = 

@number_files[top]/@number_files["ALL"]
} # proportion of training files with topic

@allngrams.each { |ngram|  # loop over ngrams in 
training set

@topic.each { |top|  # loop over topics in 
training set

puts "computing correlation coefficient 
for #{ngram} AND TOPIC: #{top}"

compound_key = ngram + top

@correlation[compound_key] = 0.0  # start 
at zero

covariance = 0.0
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variance_ngram = 0.0
variance_topic = 0.0

# @correlation[ngram.topic] = 
covariance/Math.sqrt(variance_ngram*variance_topic)

@training_file.each { |file|
if @topic_file[file] == top

delta_top = (1.0 - 
@topic_average[top])

else
delta_top = (0.0 - 

@topic_average[top])
end

variance_topic = variance_topic + 
delta_top**2

if @StatData[file].has_ngram?(ngram)
delta_ngram = (1.0 - 

@allfilem[ngram])
else

delta_ngram = (0.0 - 
@allfilem[ngram])

end
variance_ngram = variance_ngram + 

delta_ngram**2

covariance = covariance + 
delta_top*delta_ngram

} # loop over files in training set

@correlation[compound_key] = covariance/ 
Math.sqrt(variance_ngram*variance_topic)

}
}

end
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def show
puts "\nTraining Files"
puts @training_file
puts "\nTopics"
puts @topic

puts @StatData

puts "\nUnigram Match Statistics"
sorted = @allmatches.sort {|a,b| a[1]<=>b[1]}  # 

sort result by value (not key) 
sorted.each { |match| puts match }
puts "\nUnigram Statistics over All Files"
sorted = @allfilem.sort {|a,b| a[1] <=> b[1]}  # 

sort by value
sorted.each { |match| puts match }

puts "\nTopic Average"
puts @topic_average

puts "\nCorrelations"
sorted = @correlation.sort {|a,b| a[1] <=> b[1]}  

# sort by value
sorted.each { |match| puts match }

end 
end

# simple demo

#t = Trigram.new("test.txt")

#t.show

set = Trainer.new("train.txt")

set.show
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à Advanced Statistical Models of Text

An advanced search engine searches by topic not by direct key word or phrase matching.
For example, one end user might search for articles on the topic "Wall Street", meanng
the financial industry, not the exact phrase "Wall Street".  Another end user might search
for articles on the topic "NASA," the National Aeronautics and Space Administration.
Instead of searching for the phrase "Wall Street" or "NASA", an advanced search engine
searches for statistical patterns  of words and phrases that occur when the topic "Wall
Street" or "NASA" is discussed.  For example, both "space" and "rocket scientist" tend to
occur in articles about  NASA.  However,  the phrase  "rocket scientist" also occurs  in
articles  about  so-called financial engineering on Wall Street  (meaning in the financial
industry).  In general, an advanced search engine needs sophisticated statistical models of
the frequency and/or location of words and phrases in a document as a function of topic.

The Gaussian (also known as the Normal or Bell Curve) distribution or function is a com­
mon function in standard statistics.  The Gaussian is frequently used as a key building
block of statistical and mathematical models.  The Gaussian is probably overused in mathe­
matical modeling.  However, for illustrative purposes, the Gaussian is used here to illus­
trate more advanced statistical models of the frequency and location of words and phrases
(n-grams) in text.

HoldForm[ N[x, µ, σ_] = (1.0/ (Sqrt[2 Pi] σ) Exp[ 
-(1./2.)(x - µ)^2/σ^2] ) ]  (* the definition of the 
Gaussian or Normal function *)

N@x, µ, σ_D = 1. ã− 1. Hx−µL2������������������2. σ2
��������������������������è!!!!!!!2 π σ
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Gaussian[x_, µ_:0.0, σ_:1.0] := (1.0/ (Sqrt[2 Pi] σ) 
Exp[ -(1./2.)(x - µ)^2/σ^2] ) (* a user defined 
Gaussian function in Mathematica *)

Plot[Gaussian[x], {x, -4,4}]  (* make a plot of the 
Gaussian or Normal *)
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Plot[Gaussian[x, 1], {x, -4,4}]  (* make a plot of the 
Gaussian with a mean at 1.0 *)
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Plot[Gaussian[x, 0, 2], {x, -4,4}]  (* make a plot of 
the Gaussian with mean 0.0, standard deviation 2 *)
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The Gaussian can be extended to two (or more) dimensions.  For statistical language
processing, one can define the two dimensions x and y as the frequency of two different
words or phrases in a document, for example "space" and "rocket scientist" in articles
about NASA and Wall Street financial engineering.  

Gaussian2D[x_, µ_:{0.0, 0.0}, σ_:{{1.0, 0.0}, {0.0, 
1.0}}] := (1.0/ (Sqrt[2 Pi] Sqrt[Det[σ]]) Exp[ 
-(1./2.)(x - µ) . Inverse[σ] . Inverse[σ] . (x - µ)] )
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Plot3D[ Gaussian2D[{x,y}], {x, -4, 4}, {y, -4, 4}, 
PlotRange->All, ImageSize->{72 6, 72 6}] (* display a 
three dimensional plot of the 2D Gaussian function of 
x and y *)
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Plot3D[ Gaussian2D[{x,y}, {2., 0.0}], {x, -4, 4}, {y, 
-4, 4}, PlotRange->All, ImageSize->{72 6, 72 6}]  (* 
display a three dimensional plot of the 2D Gaussian 
function of x and y *)

-4

-2

0

2

4 -4

-2

0

2

4

0

0.1

0.2

0.3

-4

-2

0

2

4
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The plots  below illustrate  the distribution of X (use of "space")  and Y (use of
"rocket scientist") in articles about NASA.  The frequency of "space" and "rocket scien­
tist" is correlated in articles about NASA.
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Plot3D[ Gaussian2D[{x,y}, {0.0, 0.0}, {{1.0, 0.5}, 
{0.5, 1.0}}], {x, -4, 4}, {y, -4, 4}, PlotRange->All, 
PlotLabel->StyleForm["2D Gaussian Distribution with X 
and Y Correlated", FontSize->15], ImageSize->{72 6, 72 
6}]

2D Gaussian Distribution with X and Y Correlated

-4

-2

0

2

4 -4

-2

0

2

4

0

0.1

0.2

0.3

0.4

-4

-2

0

2

4

� SurfaceGraphics �

search36.nb 34



DensityPlot[ Gaussian2D[{x,y}, {0.0, 0.0}, {{1.0, 
0.5}, {0.5, 1.0}}], {x, -4, 4}, {y, -4, 4}, PlotRange-
>All, PlotLabel->StyleForm["2D Gaussian Distribution 
with X and Y Correlated", FontSize->12], ImageSize-
>{72 6, 72 6}] (* a density plot is another way of 
displaying a function of x and y *)
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2D Gaussian Distribution with X and Y Correlated

� DensityGraphics �

The distribution (below) of X (use of "space") versus Y (use of "rocket scientist") for
articles about Wall Street.  "Rocket scientist" is used 1% of time.  "Space" is uncorrelated
with the use of "rocket scientist". 

search36.nb 35



WallStreet = DensityPlot[ Gaussian2D[{x,y}, {0.0, 
1.0}, {{1.0, 0.0}, {0.0, 1.0}}], {x, 0, 4}, {y, 0, 4}, 
PlotRange->All, PlotLabel->StyleForm["2D Gaussian 
Distribution with X and Y Correlated", FontSize->12], 
ImageSize->{72 6, 72 6}]
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� DensityGraphics �

The distribution (below) of X (use of "space") versus Y (use of "rocket scientist") for
articles about NASA.  "Rocket scientist" is used 2% of time and "space" is used 2% of
time on average.  "Space" is highly correlated with the use of "rocket scientist". 
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NASA = DensityPlot[ Gaussian2D[{x,y}, {2.0, 2.0}, 
{{1.0, 0.5}, {0.5, 1.0}}], {x, 0, 4}, {y, 0, 4}, 
PlotRange->All, PlotLabel->StyleForm["2D Gaussian 
Distribution with X and Y Correlated", FontSize->12], 
ImageSize->{72 6, 72 6}]
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� DensityGraphics �

The plots  below illustrate  the distribution of X  (use of "space") and Y (use of
"rocket scientist") in all articles, articles about both NASA and Wall Street.
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Both3D = Plot3D[ Gaussian2D[{x,y}, {0.0, 1.0}, {{1.0, 
0.0}, {0.0, 1.0}}] + Gaussian2D[{x,y}, {2.0, 2.0}, 
{{1.0, 0.5}, {0.5, 1.0}}], {x, 0, 4}, {y, 0, 4}, 
PlotRange->All, PlotLabel->StyleForm["2D Gaussian 
Mixture Distribution with X and Y Correlated", 
FontSize->12], ImageSize->{72 6, 72 6}]

2D Gaussian Mixture Distribution with X and Y Correlated
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WallSteetAndNASA = DensityPlot[ Gaussian2D[{x,y}, 
{0.0, 1.0}, {{1.0, 0.0}, {0.0, 1.0}}] + 
Gaussian2D[{x,y}, {2.0, 2.0}, {{1.0, 0.5}, {0.5, 
1.0}}], {x, 0, 4}, {y, 0, 4}, PlotRange->All, 
PlotLabel->StyleForm["2D Gaussian Mixture Distribution 
with X and Y Correlated", FontSize->12], ImageSize-
>{72 6, 72 6}]
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Notice that there is some overlap in the example above.  If both "rocket scientist" and
"space" make up 2% of the words and phrases (N-Grams) in a document (article), then it
is almost certainly about NASA.  If "rocket scientist" is used 2% of the time and "space"
is never used (0% of the time), then the document (article) is almost certainly about Wall
Street.   If both "rocket scientist" and "space" are used 1 % of the time, the document
could be about either Wall Street or NASA.  One can in fact compute a probability that
the article is about Wall Street (e.g. 30%) or about NASA (e.g. 70%) based on the statisti­
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cal model of the frequency of "rocket scientist" and "space" in documents.  To resolve the
overlaps would require a more sophisticated model of additional N-Grams.  For example,
one might include the frequency of other words and phrases such as "NASA" or "bond
trader" in the document to improve the accuracy.

Note however that statistical models cannot resolve some cases.  They can only imitate
human understanding.   For example, former US Under Secretary of the  Treasury and
Goldman Sachs executive Neel Kashkari actually worked for NASA prior to moving to
Wall Street.   His  NASA background was frequently mentioned in news articles about
him.  Consequently, a statistical model would have difficulty identifying an article about
Neel Kashkari as an article about Wall Street.  Some Wall Street "rocket scientists" actu­
ally are rocket scientists.  Note also that many articles about NASA discuss the federal
budget, the US Treasury, and other government finance issues making separation based
on fnancial  key words  and  phrases  problematic  (probably the  presence  of "Goldman
Sachs" in an article would solve the problem in Neel Kashkari's case).  Only actual under­
standing of the text could guarantee a perfect search result in some cases.

Real world distributions are rarely Gaussians.  They are usually more complex and often
exhibit long "non-Gaussian" tails.   The Gaussian is  used here only for illustrative pur­
poses.  Incidentally, a number of prominent Wall Street financial models including nota­
bly the famous Black-Scholes option pricing model and the Gaussian copula model used
to value mortgage backed securities make heavy use of the Gaussian even though most
financial assets  exhibit  non-Gaussian tails.   These financial models  tend,  therefore, to
understate the risk (and overstate the value) of various financial assets.  A real statistical
model of English would use more complex models than these simple Gaussian examples
to imitate human understanding of text. 

Plot[1.0/(1.0 + (x-1.0)^2), {x, 0.0, 10.0}, PlotLabel-
>StyleForm["A Distribution with a Non-Gaussian Tail", 
FontSize->18], ImageSize->{7 72, 7 72}]  (* plot the 
Cauchy-Lorentz function, a simple function with a long 
tail *)
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The advantage of using statistical models of language is that proven statistical methods,
including some advanced pattern recognition methods, already exist, whereas actual under­
standing of language is an unsolved basic research problem.  A company or organization
need not invest in years of high risk basic research to achieve improved search results.
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ü Mathematical Models

The example above is a simple example of type of mathematical model known as a Gauss­
ian Mixture Model (GMM) composed of sums of two or more Gaussian distributions.  A
Gaussian Mixture Model can, with difficulty, approximate any other distribution.  Unless
the distribution being approximated is actually a Gaussian Mixture Model formed from a
finite number of Gaussians, the approximation will often require a very large number of
Gaussians and still have significant errors.  Present day speech recognition algorithms use
extremely complex Gaussian Mixture Models  to recognize the basic sounds in speech,
known as phonemes, for example, the "AH" sound in "father".  The Gaussian Mixture
Models  in speech recognition algorithms today achieve rather limited accuracy, as any
user of automatic speech recognition systems  such as telephone customer service lines
can attest to.  Other, hopefully simpler, mathematical models may be needed to achieve
higher performance in speech recognition or in text search.

Constructing mathematical models that work well is something of a "black art".  There
are standard techniques such as Gaussian Mixture Models but these often require tweak­
ing to use effectively.   There are a range of fitting methods used to find mathematical
models but these also have many pitfalls and often require "hand tuning" by the mathemati­
cal modeler.  It usually requires a significant amount of trial and error as well as insight to
find a good mathematical model.
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à Conclusion

Searching for documents and other items  on the Web or computers often takes a long
time.  Highly paid professionals spend hours, days, and even longer searching for informa­
tion on the Web or computers.  With professional salaries of tens to hundreds of dollars
per hour, lengthy searches cost hundreds to thousands of dollars per search.  Highly paid
professionals may conduct hundreds, even thousands, of searches each year.  The cost of
lengthy searches can add up to tens of thousands, hundreds of thousands, even millions of
dollars for just one professional.   The cost to organizations with more than one profes­
sional can easily be many millions of dollars.  The cost to the economy as a whole is
probably billions of dollars.  More powerful search engines can save time, money, and
frustration – and ensure success.  

Search engines today are based primarily on matching words and phrases often weighted
by the popularity of documents, advertising dollars, and other adjustments.  In practice,
end users often spend many minutes, hours, or days paging through search results and/or
trying many different  search words and  phrases trying to find a relevant  document or
item.  More powerful search methods are needed.

The cause of the costly state of search is that present-day search engines do not under­
stand  either  the  search queries  or  the  documents  or  items  searched.   More  powerful
search engines need understanding or a way to emulate aspects of human understanding
of text.  The dream search engine should find documents or other items by topic, not by
word  or  phrase,  and  return only  documents  or  items  related  to  the  topic  of  interest.
Actual understanding of natural language by computers  has proven extremely difficult,
like most problems in artificial intelligence (AI), and successes have been few and lim­
ited.   Hence,  search  engines  continue  to  rely  on simple  word  and  phrase  matching.
While actual understanding is probably decades, if not centuries, in the future, statistical
language processing methods based on the frequency and location of words and phrases
in documents can achieve a degree of searching by topic today.  

search36.nb 43



About the Author

John F. McGowan, Ph.D. is a software developer, research scientist, and consultant.
He works primarily in the area of complex algorithms that embody advanced mathemati­
cal and logical concepts, including speech recognition and video compression technolo­
gies.  He has extensive experience developing software in C, C++, Visual Basic, Mathe­
matica, and many other programming languages.  He is probably best known for his
AVI Overview,  an  Internet  FAQ (Frequently  Asked  Questions) on the  Microsoft  AVI
(Audio Video Interleave) file format.   He has worked as a contractor at NASA Ames
Research Center involved in the research and development of image and video process­
ing algorithms and technology.  He has published articles on the origin and evolution of
life, the exploration of Mars (anticipating the discovery of methane on Mars), and cheap
access to space.  He has a Ph.D. in physics from the University of Illinois at Urbana-
Champaign and a B.S. in physics from the California Institute of Technology (Caltech).
He can be reached at jmcgowan11@earthink.net

© 2009  John F. McGowan. Ph.D.

search36.nb 44


