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Outline of Talk

n Oil and natural gas on Earth and Mars
n Instrumentation

• Ground Penetrating Radar
• Trace Gas (Methane) Detectors

– Point Detectors
– Open Path Detectors
– Remote Sensors
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Oil and natural gas

n Finding past life - even present life - on
Mars may be quite difficult.

n Need for a biomarker or biomarkers that
will be widespread, easy to find and
easy to identify.

n Ideally, need to be able to detect
biomarker at a distance.  Cannot visit
every square meter of Mars.
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Oil and natural gas

n Conventional theory holds that oil, coal,
natural gas, and other subsurface
hydrocarbons are derived from past life
on Earth.

n Far more carbon is stored in oil, gas,
and other subsurface hydrocarbons than
in surface life.
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Oil and natural gas

n Nearly all oil and coal contains
molecules of biological origin - especially
hopanoids, phytane, and sterane.

n Biological origin of hopanoids, phytane,
and sterane is almost universally
accepted.

n Sedimentary source rocks associated
with natural gas contain the same
molecules and kerogen.
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Oil and natural gas

n Oil, coal, and natural gas are usually
attributed to pressure cooking of
biological debris over millions of years.

n Hopanoids derive from prokaryotes,
simple single-celled organisms, not
plants or animals.

n Oil is now attributed to simple organisms
in rivers and seas, not plants and
animals.
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Oil and natural gas

n An ancient wet and warm Mars may
have supported oceans, lakes, or rivers
teeming with microorganisms.

n Conditions for formation of oil, coal, or
natural gas may have occurred on
ancient Mars.

n Time frame is 3.8 billion years ago
(Noachian Mars) to 300 million years
ago.
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Oil and natural gas

n An alternative theory holds that oil, coal,
and natural gas are primordial.

n This theory almost certainly predicts
large quantities of oil, coal, or natural
gas on Mars.

n Some variants (e.g. Thomas Gold)
propose that life originated in the
primordial subsurface hydrocarbons.
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Oil and natural gas

n Columbia River Basalt Group SLiME
ecosystem is often suggested as a
model for current life on Mars.

n Natural gas was produced commercially
at the Columbia River Basalt.

n SLiME proposed to produce methane
n Methane seeps from a SLiME-like

Martian ecosystem seem likely.
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Instrumentation

n How to find oil or natural gas on Mars.
• Ground Penetrating Radar
• Trace Gas Detectors

– Point Detectors
– Open Path Detectors
– Remote Sensors

• Scanning IR Lasers
• Passive IR Imaging Arrays
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Ground Penetrating Radar

n Hydrocarbons have a dielectric
permittivity in range 2.0 to 3.0

n Water and water ice have dielectric
permittivity in range 2.0 to 3.0

n Martian regolith has dielectric permittivity
in range 2.0 to 3.0

n GPR cannot unambiguously identify oil
and natural gas
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Trace Gas Detectors

n Detect CH4, H2S, H20, and other gases.
n Unambiguously identify methane (CH4),

Hydrogen Sulfide (H2S), Water Vapor
(H20), and other gases.

n Measure the concentration of CH4, H2S,
H20, and other gases in the Martian
atmosphere.
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Trace Gas Detectors

n Mars has winds (6-8 meters/second) that
will carry gas from seeps far downwind.

n The Martian atmosphere has turbulent
diffusion that will spread the gas seep
across the wind and vertically.

n Thus, even a point trace gas detector
will be able to detect a methane seep at
a distance.
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Mobile Probes

n Mobile probes can carry trace gas
detectors and locate gas seeps of any
origin.

n High Speed Rovers (1 meter per
second)

n Balloons (1-10 meters/second)
n Airplanes (10-100 meters/second)
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Mars Rover

NOMAD PROTOTYPE
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Mars Balloon

<- Retroreflector

Balloon with Open Path
IR Trace Gas Detector

SURFACE OF MARS
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Mars Balloon

JPL MARS BALLOON DEPLOYMENT
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Mars Airplane
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Mobile Probes

n Usually have a science payload of 15-30
KG

n Usually have a few hundred watts of
total power (e.g. 200 Watts)

n Usually have a science payload volume
of order 100 cm by 100 cm by 100 cm
(1,000,000 cm3) or less
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Gas Seeps on Mars

n 0.34 KG/sec emission rate
n Gaussian Plume Model
n Distances in Meters
n Gas Concentration in Parts Per Billion of

Earth Atmosphere at Standard
Temperature and Pressure (STP)

n 1 PPB Earth = 1 x 10-9 KG/m3



John F. McGowan, Ph.D.
E-Mail: jmcgowan@mail.arc.nasa.gov 7/28/00 21

Gas Seeps on Mars

n Wind velocity of 8 meters per second

n  σ Y (Across Wind) = 0.04 x

n  σ z (Vertical)          = 0.04 x

n x is distance down wind.
n This is a naive extrapolation of Earth

Gaussian Plume Models to Mars.
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Gas at 1 Meter (Rover)
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Gas at 100 Meters (Aerobot)
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Gas at 500 Meters (Aerobot)
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Coverage of Mars (100 days)

Speed Range Coverage Percent

 1 m/sec 100 m 1,728 km2 0.0012 %

100 m/s 100 m 17,280 0.12 %

100 m/s 1,000 m 1,728,000 1.2 %

100 m/s 10,000 m 17,280,000 12.0 %



John F. McGowan, Ph.D.
E-Mail: jmcgowan@mail.arc.nasa.gov 7/28/00 26

Gas Seeps

n Probes should travel as close to
perpendicular to the Martian wind
direction as possible to achieve
maximum coverage of the Martian
surface.

n Probes should travel as close to the
Martian surface as possible to maximize
the likelihood of seep detection and the
detection range to a seep.
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Infrared (IR) Gas Detectors

Sensor Size Weight Power MDC Time

DFG 45 cm by
45 cm by
12 cm

25 KG 60 W 23 ppb 2.1 sec

Rosemount 22 cm by
48 cm by
48 cm

25 KG 150 W 1 ppm 0.5 – 20
sec

ALIAS 200 cm by
50 cm by
50 cm

72 KG 400 W 50 pptv 10-30 sec
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Mass Spectrometers (MS)

Sensor Size Weight Power MDC Time

ESS 53 cm by
45 cm by
23 cm

26 KG 170 W 2 ppb 100 msec

Viking
GCMS

less than
100 cm by
100 cm by
100 cm

much less
than 600
KG

much less
than 140 W

10-50 ppm At least
10.24
seconds

Viking
SpectraTrak

35 cm by
52.5 cm by
80 cm

66 KG 1300 W few ppm 10-15
minutes

Galileo MS 18.4 cm
(D) by 37
cm (L)

13.2 KG 13 W + 12
W

10 ppmv
H2O

75 seconds
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Current Trace Gas Detectors

n Are point or open path detectors.
n In principle, scanning IR laser detectors

(active sensors) and passive IR imaging
arrays (passive sensors) are possible.

n Scanning IR detectors and passive IR
imaging arrays can detect gas plumes at
a distance without relying on dispersion
in the atmosphere.
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Current Trace Gas Detectors

n Too big, too heavy, too high power, too
insensitive, or too slow for detecting gas
seeps from mobile probes on Mars.

n Pretty close to needed parameters
n “Faster, better, cheaper” mass

spectrometers and infrared detectors are
being developed.  Probably can be
developed to meet mission needs.
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System Requirements

n SIZE: 1000 cm3

n WEIGHT: 2 KG
n POWER: 20 Watts
n RESPONSE TIME: 1 second
n Minimum Detectable Concentration

(MDC): 10 ppb of Earth atmosphere at
STP (about 1 x 10-8 KG/m3)
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System Requirements

n Bit Rate: 4096 bits per second
n Bit Error Rate: 10-5

n Target Gases: Methane (CH4), other
hydrocarbon gases, Hydrogen Sulfide
(H2S), Water Vapor (H2O)
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Conclusion

n The Dream: The Probe detects a gas
seep at a distance.

n The Probe navigates to the source of the
gas seep.

n The Probe analyzes the soil at the gas
seep and finds organic molecules such
as hopanoids that indicate past life or
even finds present life!
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Oil and natural gas

n On Earth, most commercial oil and gas
is 400 million years or younger.

n Several commercial fields are
Proterozoic (Precambrian)

n Oil seeps in 1.1 billion year old rocks in
U.S. mines reported.

n Oil “shows” in Australia to 1.6 billion
years ago.
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Oil and natural gas

n Small amounts of oil reported preserved
in “inclusions” in Archaean sandstones
from several sites to 3,000 million years
ago.

n Kerogen, presumed precursor of oil and
gas, common in Precambrian rock.

n Kerogen reported in Isua rocks in
Greenland (3.8 billion years ago)
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Oil and natural gas

n Could oil or natural gas formed hundreds
of millions or billions of years ago have
survived to the present on Mars?

n Some studies indicate that oil can be
stable under conditions of oil creation for
billions of years.  Conversion to natural
gas requires higher temperatures than
petroleum genesis.
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Oil and natural gas

n On Earth, sedimentation and
metamorphosis have been continuous.
Few primordial rocks survive, e.g. Isua
rocks in Greenland.

n Any ancient hydrocarbon deposits on
Earth would have buried at great depth
and pressure cooked into natural gas.
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Oil and natural gas

n On Mars, ancient rocks, e.g. 3.8 billion
years old, appear to survive near
surface.  An ancient oil deposit may
never have been buried at sufficient
depth to convert to natural gas.

n Martian volcanoes may have provided
caprocks to prevent outgassing of gas
fields.
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Oil and natural gas

n Oil is ideal biomarker because it can
seep to the surface and directly contains
biological molecules such as hopanoids.

n Natural gas is also a biomarker.
However, it will not directly contain the
biological molecules.  Must seek
associated sedimentary source rocks to
prove biology.
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Oil and natural gas

n The easiest way to look for oil, coal, and
natural gas is surface seeps of natural
gas, primarily methane, and oil.

n No excavation.
n No drilling.
n Methane is less than 20 parts per billion

of Martian atmosphere.  Methane seep
will be very obvious.
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Oil and natural gas

n Seeps of natural gas on Earth follow a
log-normal distribution.

n Most seeps are small.
n Some seeps are large.  These seeps

dominate.
n Coal Oil Point at Santa Barbara is an

example of a large seep (roughly 0.34
KG/second of Methane)
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Oil and natural gas

n On Mars, would try to find a large seep.
n A large seep will be easiest to detect.
n A large seep will probably represent a

large subsurface source of gas near the
surface.

n May find hopanoids or other biomarkers
in the soil at the seep.  Even oil on
surface may be possible.
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Under Development

Sensor Size Weight Power MDC Time

TinyTOF 30 cm by
15 cm by
15 cm

5 KG 50 Watts ? ?

JPL (Sinha
et al)

? 1 KG 2 Watts ? ?

JPL
(Chutjian
et al)

10 cm by
15 cm by
20 cm

1.1 KG ? ? ?

Cassini-
Huygens

? ? ? 10 ppb ?



John F. McGowan, Ph.D.
E-Mail: jmcgowan@mail.arc.nasa.gov 7/28/00 44

Under Development

n Small solid-state Fourier Transform
Infrared Spectrometer (FTIR), less than
2 cm3,reported.

n Small solid state gas chromatograph
prototype, less than 2 cm3, reported.

n Further miniaturization of suitcase sized
IR prototypes (DFG) are possible.


