
John McGowan Page 1 10/29/08

Complex Algorithm Research and Development
Harder Than Many Think

© 2008, John F. McGowan, Ph.D.

Version 1.0.3: October 28, 2008

Introduction

An algorithm is a procedure or formula for solving a problem. For the
purposes of this article, a complex algorithm is defined as an algorithm
that embodies advanced mathematical or logical methods and requires
at least one thousand (1000) lines of the C/C++ programming
language to implement. The term C/C++ is used intentionally to
reflect the reality that object-oriented methods are of limited use in
complex algorithms, although the algorithms are often packaged inside
an “object” for easy integration into applications.

Complex algorithms are typically implemented as either computer
software or in custom VLSI chips (e.g. Application Specific Integrated
Circuits or ASICs). Research and development of complex algorithms
is a specialized area and differs in a number of ways from most
software and hardware development. Remarkably, many computer
software business and engineering professionals often underestimate
or do not understand the difficulties and scope of complex algorithm
projects.

Complex algorithms are already in widespread use in commercial
applications. Prominent examples include the video compression
algorithms that enable BluRay, DVD Video, YouTube, and many other
modern digital video systems. The US DVD Video market is around
$25 billion per year (2007). Although limited, speech recognition such
as now frequently encountered in telephone help and customer service
systems is another example. Other examples include encryption,
seismic modeling used in oil and gas exploration, sophisticated
financial models, traffic models, and many others.

Complex algorithms may solve a range of major problems confronting
the human race including major diseases such as cancer, the need for
more and cheaper energy, and so forth. Molecular modeling may
enable the design of drugs or systems of drugs that can selectively
target and destroy cancer cells based on the identifying characteristics
of cancer cells such as chromosomal anomalies, something currently
impossible. Electromagnetic modeling software may enable the

John McGowan Page 2 10/29/08

successful design and fabrication of working commercial fusion power
sources. These are potential trillion-dollar markets. The global annual
energy market is over $1 Trillion.

Note: Since I am a software developer, I will focus primarily on
complex algorithms developed and implemented as computer
software. Many of my comments apply equally well to hardware
implementation. Where I have some knowledge and experience, I will
make some comments on specific hardware issues.

Complex Algorithms Are Difficult

Complex algorithms are usually quite difficult to develop and often
take longer than experience with other software projects would
indicate. Although there are exceptions, complex algorithm projects
usually take between four (4) months and several years. True
research projects in which new mathematical or logical methods are
developed are extremely unpredictable and typically take years. Most
major scientific discoveries and inventions have taken at least five (5)
years.

Complex algorithms frequently involve a tight coupling between
different parts of the algorithm. All parts must work together within
tight tolerances for the entire algorithm to work. This is similar to
mechanical systems such as automobile engines or mechanical clocks.
Indeed, implementations of complex algorithms are often referred to
as “engines”, partly for this reason. Complex algorithms are often
very unforgiving. Even very small errors, getting a single bit wrong,
results in the implementation failing. This occurs frequently with
encryption where usually every bit must be correct and video
compression where even small errors often result in unacceptable
“artifacts” in the decoded video. In practical terms, this means that
the amount of time spent per line of working code is often significantly
larger for complex algorithm projects than other software projects
such as web sites, user interfaces, database reporting systems, and so
forth

Most commercial software projects involve at most mathematics
taught in early high school (9th, 10th grade) in the US. Even advanced
high school mathematics such as the solution to quadratic equations is
uncommon outside of computer graphics. Complex algorithms in
widespread use today typically involve mathematics that is taught in
the first and second year of college at a good college or university in
the US. A few complex algorithms involve more advanced

John McGowan Page 3 10/29/08

mathematics. For example, the Global Positioning System (GPS) uses
General Relativity, advanced undergraduate or graduate level
mathematics, to determine the location and time correctly. In the
future, more advanced mathematics may be needed for pattern
recognition and other advanced tasks. Most commercial software
developers do not have much experience with mathematical software
at the level found in complex algorithms. Research and development
of complex algorithms often requires a range of mathematical and
logical skills that are not common.

Return on Investment

The return on investment for a successful complex algorithm project
can be very high. Complex algorithm research and development is
typically done by small teams or individuals. Small teams are the
most common. Even a multi-year project, for example five years, with
a ten person team (a large team) has a total cost of about $7.5 million
(using a total cost per full time employee of $150K/year). A home run
can solve a billion dollar or larger problem, bringing in hundreds of
millions or even billions of dollars.

• Return = $100 M / $7.5 M = 13.3 (small home run)
• Return = $1 B / $7.5 M = 133 (big home run)
• Return = $1 T / $7.5 M = 133,000 (off the charts)

The greatest opportunities and the greatest risks lie in areas that
require development of new mathematical or logical methods; that is
true research. New complex algorithms can be converted very rapidly
to commercial software products, even in a matter of months, as
happened with new video compression algorithms in 2003.

Research and Development

The commercial software industry focuses overwhelmingly on
“technically feasible” projects. Many venture capital firms explicitly
claim to only invest in proven, technically feasible projects. Similar
thinking pervades the commercial software industry. Where complex
algorithms are concerned, technically feasible means proven
algorithms for which working prototypes exist somewhere. The
working prototypes are usually computer programs, often slow, that
successfully implement the algorithm. These are frequently prototypes
in the C or C++ programming languages, although Java is becoming
more common (see the discussion of software engineering below).
Thus, most commercial projects in the complex algorithms arena

John McGowan Page 4 10/29/08

involve such tasks as porting algorithms to a different platform (for
examples, Unix to Windows), optimizing the algorithms for a new
platform, integrating the algorithms into an application program such
as a media player, converting a prototype into a production system,
and so forth. Most research scientists would call these activities
“Development” and not “Research” or “Research and Development”.

The commercial software industry follows a widely accepted rule to
avoid projects that are not technically feasible, meaning true research
projects. Nonetheless, the rhetoric of the commercial software
industry, both aimed at unsophisticated investors and customers is the
opposite. Terms like research, science, and research and development
are used routinely to describe commercial software development
activities. Many companies make statements that either explicitly
claim or imply that the company has a large R&D group engaged in
true research. Note that rhetoric aimed at sophisticated investors such
as venture capitalists is often the opposite, which can be quite
confusing.

Historically, the commercial software industry has relied heavily on
government sponsored research programs such as the Defense
Advanced Research Projects Agency (DARPA) and the National
Aeronautics and Space Administration (NASA) for the true research in
software. Many types of software and specific software products can
be traced back to government sponsored research programs. Some
well known examples include the Internet, originally a DARPA project,
and the World Wide Web, which grew out of research projects at CERN
and NCSA. Many other examples exist. Essentially all speech
recognition software is derived from research sponsored by DARPA,
especially projects at Carnegie-Mellon University. Nonetheless,
industry rhetoric often invokes the image of private inventors in
garages, the Wright brothers, and similar images of “free enterprise”
and individual initiative. Typically, the putative inventor such as Tim
Berners-Lee or Marc Andreessen is emphasized and the relevant
government research program ignored or downplayed. Often there is
little or no progress in commercial software if the relevant government
research program is unable to make progress. This is most evident in
pattern recognition and artificial intelligence, where progress has been
very slow or non-existent.

Many government research programs are afflicted by a single “right
way” that is pursued to the exclusion of all others. If this right way is
good, then there is steady progress in the associated commercial
software field. DARPA in particular relies upon periodic contests pitting

John McGowan Page 5 10/29/08

different methods against one another. This has repeatedly resulted in
a single approach that showed early promise taking over a field. A
contest of this type during the 1970’s resulted in the so-called Hidden
Markov Model (HMM) based speech recognition approach replacing
essentially all speech recognition research on a global scale.
Essentially all major speech recognition research groups, many directly
funded by DARPA, pursue some variant of the HMM algorithm. Yet the
performance of the HMM algorithm continues to be quite limited after
30+ years.

Most major commercial opportunities in complex algorithms require a
company to fund and undertake genuine research, a difficult task that
few companies understand. Artificial intelligence, speech recognition,
cures for major diseases such as cancer or working fusion energy
sources require substantial research.

Evaluating Technical Feasibility

In complex algorithms, technical feasibility generally means that a
working prototype of the complex algorithm exists. In practice,
working prototypes are often implemented in computer programming
languages such as ANSI C, C++, or Java. Special algorithm research
and development tools such as Matlab and Mathematica are also used.
The working prototype may be slow, inefficient, or have other
limitations, but it is or should be a proof of concept.

Seemingly, it should be easy to evaluate technical feasibility. Simply
acquire and test the working prototype. Nonetheless, there is a long
history of ostensibly sophisticated organizations and investors
investing in complex algorithm projects that are not technically
feasible, often apparently in the belief that the relevant problem had
been solved. This has happened repeatedly with pattern recognition
and artificial intelligence. It has also happened with various data
compression algorithms.

For some reason, some organizations and investors do not even
acquire and test the working prototypes. This is absolutely essential.
It is often said that one should invest in people, not in ideas. Venture
capitalists and other sophisticated investors often quote this platitude.
However, the history of complex algorithms is filled with companies
and projects with officers, directors, managers, chief scientists, and so
forth with gold-plated resumes, impressive credentials, top degrees
from top universities, and so forth that have flopped. The bottom line
in complex algorithms is that the ideas count. If the complex

John McGowan Page 6 10/29/08

algorithm doesn’t work, it doesn’t work. The company or project will
fail for purely technical reasons. This is the lesson, for example, of the
Pen Computing fad of the early 1990’s, GO, and Lernout and Hauspie
(see below). This is also one of the lessons of the complex financial
models involved in the current global financial crisis (2008). Due
diligence requires a thorough, well-considered independent test and
evaluation of the working prototype.

It can be difficult to evaluate technology demonstrations of complex
algorithms. Often there are subtle and not so subtle ways to
manipulate a technology demonstration. For example, in the early
days (1995) of MPEG digital video on personal computers, MPEG
software video player companies gave technology demonstrations on
high-end personal computers with high-end video acceleration
graphics cards. In pattern recognition, many present-day (2008)
pattern recognition algorithms can achieve recognition rates in the
range of 80-95% at least under certain controlled conditions. This
seems high. In schools, 80-95% is usually a B or an A, a good grade.
However, practical real-world pattern recognition often requires a
recognition rate of 98 or 99% or even better under field conditions. In
both examples, the technology demonstration can be misleading
without demonstrably false statements.

Actual fraud can be difficult to detect and difficult to prove. It is
important to conduct tests and evaluations of working prototypes
independent of the purveyor or other interested parties who may have
a reason to perpetrate a fraud. Complex algorithms can involve the
potential for very large returns on investment -- as noted above.
Consequently, there is considerable motivation for fraud in some
cases.

How Does Research Differ from Development?

Commercial software development is usually unpredictable. Software
projects frequently involve unexpected problems and usually take
substantially longer than planned. Nonetheless, technically feasible
commercial software development projects are more predictable than
true research projects. Often if one takes a conservative cost and
schedule estimate and multiplies this by a factor of three to four, one
gets the actual cost and schedule of the project. A common joke with
a great deal of truth is: to get the real schedule multiply the official
schedule by PI (3.14) for running around in a circle. Because the
project is technically feasible it can certainly be completed. Massive
cost and schedule overruns (such as factors of ten) can usually be

John McGowan Page 7 10/29/08

explained by incompetence or severe political problems.

True research is extremely unpredictable. Many true research projects
simply fail. The researchers are unable to find the solution. For
example, to date (2008), essentially all attempts to decipher human
speech have failed in close to a century of attempts. Substantial
research efforts at Bell Labs, MIT, and other institutions have failed to
determine why certain sound spectra correspond to the different
sounds in English and other languages. Even in successful research,
estimates are often way off. For example, the mathematician
Johannes Kepler made a bet in 1600 that he could determine the orbit
of Mars in eight (8) days. His discovery of the elliptical orbit of Mars
and other planets, one of the most important and difficult discoveries
in scientific history, took five frustrating years in which every attempt
to solve the problem failed until he found the answer in just a few days
in 1605. This process in which long periods of little or no progress are
punctuated by sudden unpredictable leaps forward is typical of true
research, especially major scientific discoveries or technological
inventions.

True research, especially major scientific discoveries or inventions,
usually involves a very large amount of trial and error. Often, after
many failures, there is a leap or leaps in which a new approach or
concept is tried which unexpectedly solves the problem. Most major
scientific discoveries or inventions took somewhere between five (5)
and twenty (20) years. This is significantly longer than the time frame
of typical commercial software industry and venture capital funded
projects. In many cases, one is talking about five to twenty years of
failure followed by a “breakthrough”, as in Kepler’s case.

In my experience, people involved in commercial software
development are often unaware that they have little or no experience
with true research. The misleading rhetoric of the computer software
industry often leads people involved in commercial software
development to think that they are engaged in the sort of true
research conjured up by iconic names like Einstein or the Wright
brothers. This undoubtedly leads to many bad decisions and
frustrating experiences.

The Importance of Rapid Prototyping

History records many remarkable instances when an individual or
small team succeeded in making a major scientific discovery or
invention on a very small budget, sometimes beating far better funded

John McGowan Page 8 10/29/08

competitors. Major scientific discoveries or inventions almost always
involve a large amount of trial and error. Discoverers or inventors who
managed to make a major discovery or invention on a shoe-string
budget usually found a very fast, inexpensive way to perform the
many trials and errors required to make a major discovery or
invention.

For example, James Watt is remembered for inventing the separate
condenser steam engine, a major conceptual leap that turned the
steam engine from a niche device used in coal mining to a major
driver of the industrial revolution. The Newcomen steam engines of
Watt’s time were huge expensive house-sized engines. Watt however
built and experimented with tiny scale models built from inexpensive
wood, copper, and other materials. This enabled him to perform
hundreds of trials and errors that led to the breakthrough concept of
the separate condenser that radically improved the Newcomen steam
engine.

Octave Chanute and the Wright brothers, his proteges, conducted
research and development of gliders constructed of cheap wood and
canvas. The gliders were flown at low altitude on soft sand beaches,
first in Gary, Indiana near Chicago where Chanute lived, and later at
Kitty Hawk in North Carolina. This meant that the inevitable damage
from crashes was limited and easily repaired. The pilots did not die
from the crashes as was common with other early would-be aviators.
By delaying work on the expensive engines until last (they planned to
buy a commercial off-the-shelf engine), they avoided the enormous
cost involved in repairing or replacing an engine after each crash. This
enabled Chanute and the Wright brothers to eventually succeed where
better funded efforts such as Hiram Maxim and Samuel Langley failed.

Progress in aviation and rocketry today is quite slow, almost flat-lined
since 1970, in part because the cost of a single trial, especially a new
high performance engine, has become extremely high, easily in the
millions if not billions of dollars per prototype engine and vehicle. In
rocketry and other high performance engines, the prototype engine
and vehicle are often destroyed during each trial. Internet
entrepreneur Elon Musk of PayPal fame encountered this problem with
his SpaceX startup as have many other Internet and software
entrepreneurs attracted by the dream of space travel.

In algorithm research and development today, rapid prototyping tools
such as Matlab and Mathematica (see below) speed up and reduce the
cost of the many trials and errors required in true research. This is

John McGowan Page 9 10/29/08

very important because the number of trials and errors is usually very
large.

The Importance of Conceptual Analysis

Most major scientific discoveries and inventions usually involve a large
amount of conceptual analysis expressed in words and pictures (often
hundreds of thousands of words). It is common to find lengthy verbal
discussions of the issues combined with rough sketches or drawings of
concepts. For example, Octave Chanute wrote an entire book Progress
in Flying Machines containing his lengthy verbal analysis of the
problem of flight. This book outlines his successful research plan to
develop working powered flight. It contains several rough drawings,
as is common in major breakthroughs, and only a few brief
calculations. The mathematician Johannes Kepler devoted much of his
book, now known as New Astronomy, to a lengthy conceptual analysis
of the problem of planetary orbits which was critical to his resolution of
the problem.

At some point, these verbal analyses are refined into precise technical
drawings in the case of mechanical inventions and specific
mathematical expressions in the case of mathematical discoveries like
Kepler’s. However, the verbal and visual analysis appears to be critical
in many discoveries and inventions and usually comes first. It is likely
that this sort of verbal and visual analysis will be essential to solve
many problems such as artificial intelligence and pattern recognition.

Historically, this conceptual analysis was considered a part of
philosophy. Much of the classical training in Greek philosophy and
mathematics probably provided important training in this conceptual
analysis. The discovery of new mathematical expressions of practical
use strictly by the symbolic manipulation and the highly abstract
thought favored by the famous mathematician David Hilbert and his
school at the University of Gottingen in the early 20th century seems to
be rare. This is specifically mentioned because Hilbert’s extremely
abstract approach to higher mathematics has come to dominate
mathematics and theoretical physics in the 20th century.

Some Famous Flops

Complex algorithm research and development is a treacherous area.
There have been numerous flops and fiascoes over the years. It is
easy to misjudge the technical feasibility of projects. There is a long
history of exaggerated claims for complex algorithms that emulate

John McGowan Page 10 10/29/08

aspects of human intelligence such as speech recognition. There has
been enormous success in data compression over the last few
decades. Nonetheless, there is a long history of exaggerated claims
for advanced in data compression. Video and other data compression
involves complex algorithms that are difficult to evaluate. Caveat
emptor!

The Pen computing fad of the early 1990’s is an example of a famous
flop. The most prominent of these firms was Jerry Kaplan’s GO,
described in his book Startup. GO and similar firms’ business plans
hinged on handwriting recognition, an unsolved problem in pattern
recognition. Kaplan actually devotes only a few pages of his book to
the handwriting recognition problem.

Another notorious example is the speech recognition firm Lernout and
Hauspie. Lernout and Hauspie collapsed in a major financial scandal
with court cases and allegations of massive fraud. Again, the success
of Lernout and Hauspie’s business depended on the solution of the
speech recognition problem, which remains largely unsolved even
today.

Note that many apparently sophisticated investors invested many
millions of dollars in both GO and Lernout and Hauspie, even though a
modicum of research would have revealed the poor state of
handwriting and speech recognition technology at the time.

Some Famous Successes

Video and audio compression is one of the most successful areas in
complex algorithms. Technologies such as VideoCD, DVD, MP3, and
BluRay all incorporate sophisticated audio and video compression
algorithms.

A major breakthrough in video compression reached the market in
2003, embodied in H.264, Windows Media 10, Flash Video, and other
video standards and products. Prior to 2003 the bitrate for usable,
loosely VHS quality video was about one (1) megabit per second. In
2003, the new video technologies achieved a bit rate of around 275
Kilobits/second, often with close to DVD quality with proper tuning of
the compression. This was a truly major advance, a rare technological
leap forward. This enabled YouTube and other forms of Internet/web
video over DSL connections.

The bottom line is that complex algorithm research and development

John McGowan Page 11 10/29/08

can be done, but it is difficult.

Software Engineering

There are significant differences between software engineering for
complex algorithm research and development and mainstream
software development. As mentioned above, complex algorithms
often involve a tight coupling between parts of the algorithm that
makes development more difficult and tedious than most software
development.

It is often easier to research and develop complex algorithms using
tools such as Matlab, Mathematica, AXIOM, or Maxima (formerly
known as MACSYMA). These are scripting languages similar to Python
or PHP. They usually have implicit variable declaration and/or
conversion. They are usually “weakly typed” languages and break
many textbook rules of “good” software engineering. They include
comprehensive, well-integrated libraries of mathematical, numerical,
and statistical functions. They usually have a data type known
variously as a list, vector, or matrix that represents sequences of
numerical or symbolic data in a flexible way. These tools are
sometimes referred to as computer algebra systems (CAS), although
this is really only one subset of their features.

Adding Two Vectors in Mathematica

A = {1.0, 2.0, 3.0}; (* A is a Mathematica list *)
B = {1.1, 0.0, 4.0};
C = A + B
Out[1]={2.1, 2.0, 7.0}

Adding Two Vectors in C/C++

#include <iostream.h>
double A[3] = {1.0, 2.0, 3.0}; // A is a C/C++ array
double B[3] = {1.1, 0.0, 4.0};
double C[3];
int index;
for(index = 0; index <3; index++)
{
C[index] = A[index] + B[index];
}
cout << “{“ << C[1] << “,” <<
C[2] << “,” << C[3] << “}” <<
endl;

John McGowan Page 12 10/29/08

Note that there is a vector class template in the C++ Standard
Template Library (STL) with somewhat similar properties to the lists in
Mathematica. The above comparison is for illustrative purposes. Even
using the STL classes, it is usually much easier to research, develop,
and test algorithms in these tools than using traditional compiled,
strongly typed languages such as C/C++, Java, or <insert your
favorite programming language here>. However, these tools are slow
and require large amounts of memory. This is a significant drawback.
Once an algorithm is developed, it is often necessary to convert the
algorithm to a fast compiled language for performance reasons. This
is easier if the target fast language has good libraries of mathematical,
numerical, and statistical functions.

One can also research and develop algorithms directly in a fast
programming language such as C/C++ or Java. This avoids
conversion costs, speed, and memory issues. However, it is often
much easier to do research and development using a tool such as
Matlab or Mathematica.

The leading algorithm research and development tools are:

• MATLAB Matlab is widely used in the commercial world, especially
in digital signal processing.

• MATHEMATICA Mathematica is widely used in government
sponsored research and development and academic research. It
has a following in Wall Street finance and economics.

• AXIOM Axiom is free, open source, with a Berkeley style license.
AXIOM was started in 1971 and has over 300 man years of work
integrated into it.

• MAXIMA Maxima is free, open-source, with a GNU license.

Many fast programming languages have been used for complex
algorithms. The most popular are probably:

• ANSI C ANSI C is almost universally available for all processors. It
is simple, efficient, with small memory needs and high speed.

• C++ C++ is object-oriented. It often has larger memory needs
than C and can be slower.

• Java Java is compiled to byte-codes, but is approaching C/C++ in
speed. It can be slower and less efficient. It can be easier to
reverse engineer.

John McGowan Page 13 10/29/08

The dream algorithm R&D tool would be similar to Matlab or
Mathematica but could be compiled to fast, efficient binaries similar to
ANSI C and would be available for all platforms. An integrated GUI
builder similar to Visual Basic and integrated network support would be
helpful. The biggest single weakness of all kinds of scripting
languages is that they are slow and cannot be compiled. For compute-
intensive complex algorithms this can be a very significant problem.
Of scripting languages, only Visual Basic 6 appears to have solved the
problem of producing a compiler that can produce binary executables
with similar performance to C/C++.

These algorithm research and development tools are not, of course, a
substitute for thought, creativity, and the extensive conceptual
analysis frequently required for major advances. Trial and error alone,
without insight, rarely succeeds.

Conclusion

Complex algorithm research and development can be done
successfully. Some great successes exist. Nonetheless, it is not easy
and many things can go wrong. The project scope is significant.
Project feasibility is difficult to assess. Genuine breakthroughs are
unpredictable and take time. The return on investment for a home run
can be five to thousands of times the original investment. There are
great unrealized opportunities, most of which require genuine
research.

About the Author

John F. McGowan, Ph.D. is a software developer, research scientist,
and consultant. He works primarily in the area of complex algorithms
that embody advanced mathematical and logical concepts, including
speech recognition and video compression technologies. He has many
years of experience developing software in Visual Basic, C++, and
many other programming languages and environments. He has a
Ph.D. in Physics from the University of Illinois at Urbana-Champaign
and a B.S.in Physics from the California Institute of Technology
(Caltech). He can be reached at jmcgowan11@earthlink.net.

John McGowan Page 14 10/29/08

References

Some Complex Algorithms

• http://www.chiariglione.org/mpeg/ (MPEG compression, one of the
great success stories)

• http://www.videolan.org/developers/x264.html (x264 is a free,
opensource h.264 video encoder)

• http://cmusphinx.sourceforge.net/ (The Carnegie Mellon Sphinx
Project, an open-source speech recognition engine)

• http://www.itk.org/ (National Library of Medicine Insight Image
Registration and Segmentation Toolkit)

Algorithm R&D Tools

• http://www.mathworks.com/ (Matlab)
• http://www.wolfram.com/ (Mathematica)
• http://www.axiom-developer.org/ (AXIOM)
• http://maxima.sourceforge.net/ (Maxima)

Books and Articles

StartUp: A Silicon Valley Adventure, by Jerry Kaplan, Houghton Mifflin
Co, Boston, 1995

“How High-Tech Dream Shattered in Scandal at Lernout & Hauspie”,
by Mark Maremont, Jesse Eisinger, and John Carreyrou, Wall Street
Journal, December 7, 2000

New Astronomy (Nova Astronomia), by Johannes Kepler, Translated
from the Latin original by William H. Donahue, Cambridge University
Press, Cambridge, UK, 1992

